

CO₂ EOR

Cor Hofstee & Robert de Kler

E cor.hofstee@tno.nl

Recovery factor and EOR

 $RF = \eta_A x \eta_V x \eta_\mu$

Typically: $\eta_A = 0.8$, dependent on mobility ratio, geology $\eta_V = 0.8$, dependent on geology, impact of gravity $\eta_\mu = 0.6$, dependent on process, wettability

EOR is about increasing η_{μ}

CO₂ EOR

- > CO₂ EOR is mature technology (>30yrs, currently 200 000 bbl/d globally)
- \sim CO₂ breakthrough between 0.5 and 2 yrs
- > Severe gravity override limits RF
- Mainly CO₂ from natural sources

Miscible vs Immiscible floods

- > Extra oil 10-15% vs 5-7% for immiscible
- Consumption 0.4 tCO₂/bbl vs 0.2 tCO₂/bbl immiscible
- > 90% is miscible
- Massive recirculation
- WACO₂ is standard approach
- Largest operations were around 15 000 bbl/d extra oil
- No primary drives, EOR only

Source: Jakobsen et al. (2005).

CO₂ EOR economics

- > Extra oil
 - Miscible 10-15% STOIIP
 - > Immiscible 5-7%
- > CO₂ net consumption
 - Miscible 0.4 t/bbl
 - > Immiscible 0.2 t/bbl
- > CO₂ purchasing dominates

TNO innovation for life

CO₂ EOR Economics TEXAS

- Dominated by purchasing costs of CO₂
- West Texas: CO₂ cost indexed to oil price assume crude @ 50 \$/bbl -> CO₂ @ 33 \$/t
- Assume for miscible net consumption: 0.4 t/bbl
 - CO₂ purchasing cost 14 \$/bbl
- Assume CAPEX+ OPEX ≈ CO₂ costs CO₂ EOR miscible UTC: 28 \$/bbl
- > UTC for immiscible estimated 21 \$/bbl @ 50 \$/bbl

Capital Intensive

- > High UTC for CO₂:
- > Smaller companies
- > State oil companies

How CO₂ EOR started

Texas – one pipeline from CO_2 reservoir to one oil field

Canada – one pipeline from Beulah (USA) to Weyburn (Canada)

Netherlands – P18-4, Q1, K12B

Coal-fired Power station Boundary dam Saskatchewan, Canada

Ship transport *Kick-start CO*₂-EOR in North Sea?

http://www.npd.no/Global/Engelsk/3%20-%20Publications/Reports/OneNorthSea/OneNortSea_Final.pdf

Volumes and routes – added by presenters to the OneNorthSea map

Proposal for a pilot project: shipping CO₂ to the K12-B reservoir and beyond

Courtesy Anthony Veder

TNO innovation for life

Potential pilot project: shipping CO₂ to the K12-B reservoir

P, T conditions in ship – flowline – reservoir system

TNO innovation for life

Photo of an offloading tower

Courtesy SBM offshore

Artistic impression of a submerged turret loading (SRV2)

Courtesy APL

Artist's impression of a gravifloat CO₂ storage and injection platform

Water-alternating-Gas (WAG)

- > Often executed by trial-and-error
- CO₂ EOR without storage objective
 - CO₂ commodity
 - Minimisation of costs of CO₂
- O_2 EOR with storage objective
 - Maximisation of CO₂ storage (Carbon credits)
- > predictions combined with optimisations are required

FIGURE 66 Schematic diagram of a water-alternating-gas (WAG) miscible CO, EOR operation

Source: ARI and Melzer Consulting (2010).

Applied Reservoir models

- > Properties of oil as a function of CO2 concentration
- Based on lab tests
- Simulator
- Black-oil simulator Eclipse 100
- > (Schlumberger)

Properties oil as function of CO_2 (SPE 107163)

TNO innovation for life

Predicted oil production as function of time

Optimization of CO2 WAG

- In-house optimization tool
- Simple Net Present Value model based
 - on cost and benefits of water, CO2 and benefits of produced oil
- reservoir model and controls as before

Results are compared against original predictions

Optimisation assumptions *

Benefits oil produced : 50 \$/bbl

1 \$/bbl,

0 \$/bbl,

50\$/ton

- Costs of water injection:
- Costs of water produced:
- Costs of CO₂ injected:
- no discounting
- 2 WAG cycles (CO₂-water)
- * example only

TNO innovation for life

Optimisation Example

Dashed line: reference case, solid line: optimisation example

Conclusions

- Real flow of multiple phases quite different form ideal picture as shown
- Besides swelling and reduced viscosity, different sweeping areas between the injected water and CO₂ may also lead to higher overall sweeping efficiency and oil production
- Optimisation
 - Variable costs and benefits lead to different injection and production schemes

TNO innovation for life

Prices

Marginal costs: water (injection (conditioning) and production): CO₂ (recycling/transport/capture (ETS) correct Rate and temperature Energy consumption etc.

Revenues: price BBL oil (fluctuating).

Whole chain optimalization by combination of economical model and reservoir model

Example case study: EOR applied @ existing fields in NW Europe

- It is most likely that no financial support is required when infrastructure is sufficiently deployed
- ETS is a good instrument for commodity pricing of CO2, which differs from other areas in the World
- Potential NPV improvements, subject to technical conditions oil field